

Instruction and operation manual

S110

Power Meter

Dear Customer,

Thank you for choosing our product.

The operating instructions must be read in full and carefully observed before starting up the device. The manufacturer cannot be held liable for any damage which occurs as a result of non-observance or noncompliance with this manual.

Should the device be tampered with in any manner other than a procedure which is described and specified in the manual, the warranty is cancelled and the manufacturer is exempt from liability.

The device is destined exclusively for the described application.

SUTO offers no guarantee for the suitability for any other purpose. SUTO is also not liable for consequential damage resulting from the delivery, capability or use of this device.

Table of contents

1. Safety instructions	4
2. Application	6
3. Features	6
4. Technical Data	
4.1 General	7
4.2 Electrical Data	7
4.3 Input-Signals	7
4.4 Output-Signals	8
4.5 Accuracy	
5. Dimensional drawing (in mm)	
6. Determination of the installation point	10
7. Installation	10
7.1 Installation Requirements	10
7.2 Installation Procedure	
7.3 Voltage and current connection	11
7.3.1 3-phase / 4-wire connection	
7.3.2 3-phase / 3-wire connection	11
7.3.3 1-phase / 2-wire connection	12
7.4 Electrical connection	
7.4.1 Connection to S330 / 331	13
7.4.2 Connection of the Rogowski coils	14
8. Signal outputs	
8.1 Modbus Communication settings (default)	15
9. Optional extra accessories	15
10. Maintenance	15
11. Disposal or waste	16
12. Warranty	
13. Appendix: Introduction to Modbus commands	17
13.1 Command request	17
13.2 Configure meter	19
13.3 Command list	
13.4 Modbus register list	24
13.5 Harmonics calculations	37
13.6 Power, energy and power factor	37

1. Safety instructions

Please check if this instruction manual accords to the product type.

Please observe all notes and instructions indicated in this manual. It contains essential information which have to be observed before and during installation, operation and maintenance. Therefore this instruction manual has to be read carefully by the technician as well as by the responsible user / qualified personnel.

This instruction manual has to be available at the operation site of the power meter at any time. In case of any obscurities or questions, regarding this manual or the product, please contact the manufacturer.

WARNING!

Dangerous Voltage levels!

Any contact with energized parts of the product, may lead to a electrical shock which can lead to serious injuries or even death!

- Consider all regulations for electrical installations.
- The system must be disconnected from any power supply during maintenance work.
- Any electrical work on the system is only allowed by authorized qualified personal.

ATTENTION!

Permitted operating parameters!

Observe the permitted operating parameters, any operation exceeding this parameters can lead to malfunctions and may lead to damage on the instrument or the system.

- Do not exceed the permitted operating parameters.
- Make sure the product is operated in its permitted limitations.
- Do not exceed or undercut the permitted storage and operation temperature.
- The product should be maintained frequently, at least annually.

General safety instructions

- It is not allowed to use the product in explosive areas.
- Please observe the national regulations before/during installation and operation.

Remarks

It is not allowed to disassemble the product.

ATTENTION!

Measurement values can be affected by malfunction!

The product must be installed properly and frequently maintained, otherwise it may lead to wrong measurement values, which can lead to wrong results.

Storage and transportation

- Make sure that the transportation temperature of device is between -30°C ... +70°C.
- For transportation it is recommended to use the packaging which comes with the device.
- Please make sure that the storage temperature of the device is between -40°C ... +85°C.
- Avoid direct UV and solar radiation during storage.
- For the storage the humidity has to be <90%, no condensation.

2. Application

The power meter is designed to measure the actual power consumption in kW and accumulate the energy consumption in kWh of a 3-phase load. Additionally other measured parameters such as current, voltage, cos phi etc. are available as well.

3. Features

- Measures active and reactive power, frequency, voltage, currents, power factor.
- Accumulates active energy [kWh].
- 3-phase 3-wire, 3-phase 4-wire, 1-phase 2-wire measurement
- Modbus / RTU output.

4. Technical Data

4.1 General

C€			
Parameters (rms values)	Voltage of each phase and average voltage [V] Current of each phase and average current [A] Active Power [kW] Reactive Power [kvar] Apparent Power [kVA] Energy (per phase and summery) Power factors Frequency [Hz] Total Harmonic Distortion [%]		
Nominal voltage range	100 V 500 V		
Power range	up to 2500 kW (depends on Rogowski coil)		
Frequency range	50 / 60 Hz		
Harmonic	up to 52th		
Sampling rate	8 k/sec		
Available clamp sensors	Rogowski coil 1 100 A 10 1000 A 30 3000 A		
Operating temperature	-25℃ +55℃		
Storage temperature	-40℃ +85℃		
Protection class	IP20 conforming to IEC 60629		
Dimensions	145 mm x 40 mm x 90 mm (L X W X H)		
Weight	210 g		

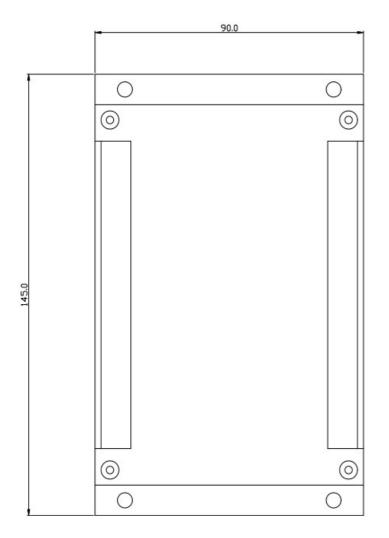
4.2 Electrical Data

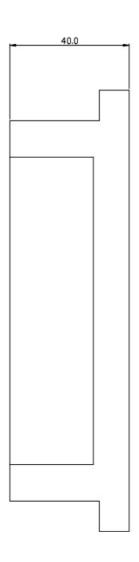
Power supply	24 VDC	
,		1

4.3 Input-Signals

Rogowski Coil	0 mV 333 mV
---------------	-------------

4.4 Output-Signals


Modbus output	See chapter 8.1
---------------	-----------------


4.5 Accuracy

Accuracy	Voltage:	0.2% (100500 V)
	Current:	0.5% (1%120% of range)
	Power factor:	0.005 from 10 120%
	Frequency:	0.01% from 45 65 Hz
	Active/Apparent Power:	IEC62053-22 Class 0.5
	Reactive Power:	IEC62053-21 Class 2
	Active Energy:	IEC62053-22 Class 0.5s
	Reactive Energy:	IEC62053-21 Class 2

5. Dimensional drawing (in mm)

6. Determination of the installation point

It is possible to install the power meter directly into the connection box on the compressor or into the connection cabinet where the power supply for the compressor is coming from.

7. Installation

Please make sure that all components listed below are included in your package.

Qty	Description	Item No.
1	Power meter	D554 0130
3	Rogowski coils	S554 0140 or S554 0141 or S554 0142
1	Instruction manual	No P / N

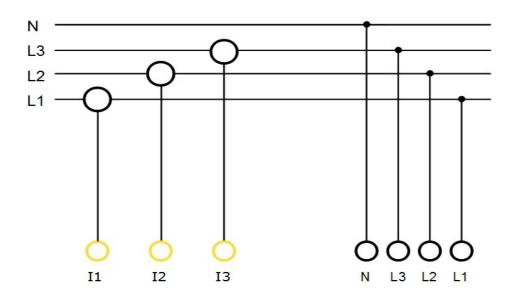
7.1 Installation Requirements

ATTENTION!

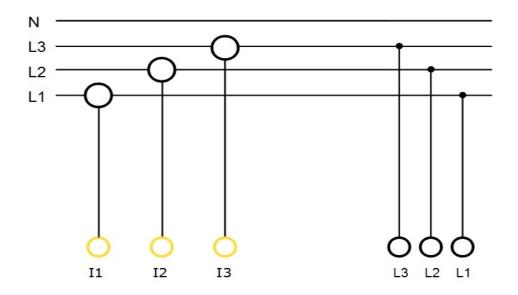
Wrong measurement is possible, if the device is not installed correctly.

- The device is for indoor use only! At an outdoor installation, the device must be protected from solar radiation and rain.
- It is strongly recommend not to install S110 in wet environment.

7.2 Installation procedure

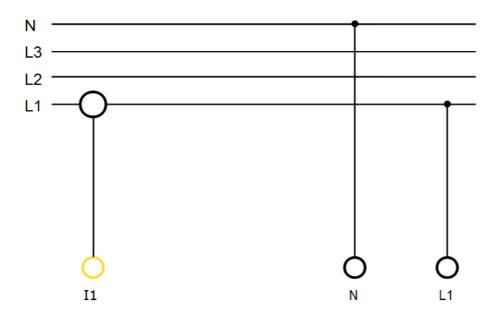

Installation of the S110 hat rail mountable

The S110 is hat rail mountable and recommended to be installed either in the power distribution cabinet or in the connection box of the compressor.

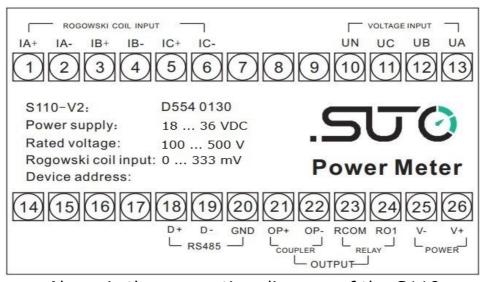


7.3 Voltage and current connection

7.3.1 3-phase / 4-wire connection



7.3.2 3-phase / 3-wire connection



7.3.3 1-phase / 2-wire connection

7.4 Electrical connection

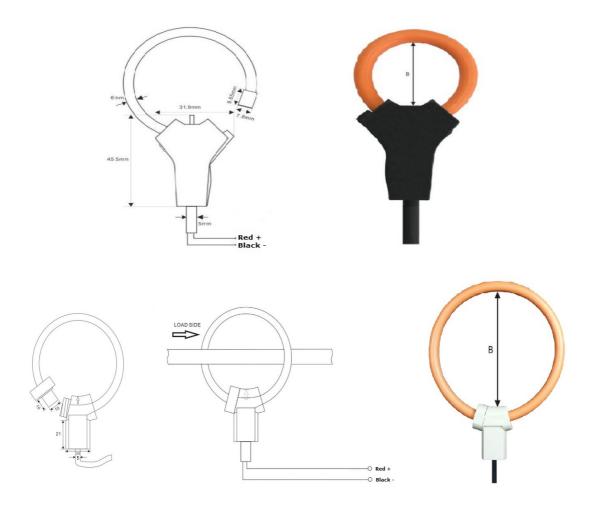
The power meter S110 can be connected to the S330 / 331. For the electrical installation please observe the following instructions.

Above is the connection diagram of the S110

ATTENTION: Do not connect any conventional coil to the Rogowski Coil inputs. Otherwise it will permanently damage the device!

7.4.1 Connection to S330 / 331

S330 / 331			S	110
Terminal Pin Signal		Pin	Signal	
A or B	3	+ Vb	26	+ 24 V
	2	- Vb	25	0 V
	4	+ D	18	+ D
	5	- D	19	- D
	6	GND	20	GND


Legend to pin assignment				
+ Vb	Negative supply voltage			
- Vb	Positive supply voltage			
+ D	Modbus data +			
- D	Modbus data -			
GND	Ground for Modbus			

7.4.2 Connection of the Rogowski coils

Please observe the following steps to connect the coil.

1. Place the coil's around the isolated conductor. If the conductor is too small, use a fastener to fix the coil as indicated in the picture below.

- 2. Take care of current orientation, There is an arrow on body to indicate direction.
- 3. Connect the black color wire to the IX+ terminal and the blue color to the IX- terminal.

Order no.	S554 0142	S554 0140	S554 0141
Coil diameter (mm)	16	100	150

8. Signal outputs

The S110 has a Modbus / RTU output to S330 / 331.

8.1 Modbus Communication settings (default)

Mode : RTU

Baud rate : 19200

Device address : 1

Framing / parity / stop bit : 8, E, 1

Remarks

Modbus communication settings can be changed through a Modbus terminal software via commands.

For more information about Modbus commands, see *Chapter 13 Appendix: Modbus programming basics.*

9. Optional extra accessories

The following extra accessories are available:

- Rogowski coil, 100 A, 16 mm diameter, 1.8 m cable, open ends.
- Rogowski coil, 1000 A, 100 mm diameter, 1.8 m cable, open ends.
- Rogowski coil, 3000 A, 150 mm diameter, 1.8 m cable, open ends.

10. Maintenance

ATTENTION!

Do not use isopropyl alcohol to clean the power meter!

11. Disposal or waste

Electronic devices are recyclable material and do not belong in the household waste.

The sensor, the accessories and its packings must be disposed according to your local statutory requirements. The dispose can also be carried by the manufacturer of the product, for this please contact the manufacturer.

12. Warranty

SUTO provides a warranty for this product of 24 months covering the material and workmanship under the stated operating conditions from the date of delivery. Please report any findings immediately and within the warranty time. If faults occur during the warranty time SUTO will repair or replace the defective unit, without charge for labour and material costs but there is a charge for other service such as transport and packing costs.

Excluded from this warranty is:

- · Damage caused by:
 - Improper use and non-adherence to the instruction manual.
 - Use of unsuitable accessories.
 - External influences (e.g. damage caused by vibration, damage during transportation, excess heat or moisture).

The warranty is cancelled:

- If the user opens the measurement instrument without a direct request written in this instruction manual.
- If repairs or modifications are undertaken by third parties or unauthorised persons.
- If the serial number has been changed, damaged or removed.

Other claims, especially those for damage occurring outside the instrument are not included unless responsibility is legally binding.

Warranty repairs do not extend the period of warranty.

ATTENTION!

Batteries have a reduced warranty time of 12 months.

13. Appendix: Introduction to Modbus commands

13.1 Command request

Slave Address			CRC
8-Bit	8-Bit	N×8-Bit	16-Bit Checking

Functional code

Functional code tells what function addressed terminal equipment can execute. The following table lists the functional code that used by this instrument, as well as their significance and function.

Functio	on Code	F	unction Name		Behavior
Decimal	Hexadecima	ıl			
3	03H		Read Holding Registers		Read present HEX from one or more registers.
16	10H		Write Multiple Reg	isters	Write present HEX on multiple registers.

Register table

Register tables have the following columns:

Register	Register	Action	Size	Type	Units	Description
Alias	Address	R/WC	Size	туре	Units	Description

• Register Alias:	The meaning of the register
• Register Address:	Modbus address of register encoded in the Modbus frame, in decimal (dec)
• Action:	The read/write by command register
• Size:	The data size in Int16
• Type:	The encoding data type
• Units:	The unit of the register value
• Range:	The permitted values for this variable, usually a subset of what the format allows
• Description:	Provides information about the register and the values that apply

Unit Table

The following data types appear in the Modbus register list:

Туре	Description	Range
UInt16	16-bit unsigned	0 65535
	integer	
Int16	16-bit signed	-32768 +32767
	integer	
UInt32	32-bit unsigned	0 4, 294, 967, 295
	integer	
UInt64	64 bit unsigned	0 18, 446, 744, 073, 709, 551, 615
	integer	
UTF8	8-bit field	multi-byte character encoding for
		Unicode
Float32	32-bit value	Standard representation IEEE for floating
		number (with single precision)
Bitmap	_	_
Date Time	_	-

Date Time Format:

Wo	rd		Unit								
	15	14	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								0
1	Reserv- ed (0)		Year (0-99,year from 2000)								
2	Month (1-12)		Day (1-31)								
3	Hour (0-23)		Minute (0-59)								
4	,		Millisecond (0-59999)								

13.2 Configure meter

You can configure the power meter by writing command and command parameters to corresponding command registers using Modbus function 16.

Command request

The following table describes a Modbus command request.

Slave Address		Command Register Address	Command Register Number	Data Length	Command Register Value	CRC
1-247	16	300(up to 423)	N	N×2		

Command Result

The command result can be obtained by reading registers 424 and 425. The following table describes the command result:

Register Address	Content	Size (Int16)	Data (example)
424	Requested Command Number	1	1001(set Date Time)
425	Result	1	0 = Valid Operation 80 = Invalid Command 81 = Invalid Parameter 82 = Invalid Number of Parameters 83 = Operation Not Performed

Command Request Example

The following table describes setting Date Time by Command Register:

Slave Address		Command Register Address		Data Length	Command Register Value	CRC
1	16	300	7	14	1001, 2016, 1, 1, 10, 10, 10	

NOTE:

All the reserved parameters can be considered as any value. e.g. 0.

13.3 Command list Set System Date Time

Command Number	Action R/W	Size	Туре	Units	Range	Description
	W	1	UInt16	_	2000-2099	Year
1001	W	1	UInt16	_	1-12	Month
1001	W	1	UInt16	-	1-31	Day
	W	1	UInt16	-	0-23	Hour
	W	1	UInt16	_	0-59	Minute
	W	1	UInt16	_	0-59	Second

Set Communications

Command Number	Action R/W	Size	Туре	Units	Range	Description
	W	1	UInt16	-	1-247	Slave Address
1002	W	1	UInt16	-	0,1,2,3, 4,5,6	Baud Rate 0=1200 1=2400 2=4800 3=9600 4=19200 5=38400 6=57600
	W	R/WC	UInt16	-	0,1,2	Parity 0 = ODD 1 = EVEN 2 = None

Set Power System

Command Number		Size	Туре	Units	Range	Description
	W	1	UInt16	-	0,1,2,3,4	Wiring 0 = 1PH2W L-N 1 = 1PH2W L-L 2 = 3PH4W 3 = 3PH3W 4 = 1PH3W_LLN
	W	1	UInt16	Hz	50,60	Nominal Frequency
1003	W	2	UInt32	V	-	VT Primary
	W	1	UInt16	V	100,110, 115,120	VT Secondary
	W	2	UInt32	Α	-	coil Primary
	W	1	UInt16	mV	MaxValue :333mV	coil Secondary
	W	2	UInt32	Α	-	Rcoil Primary
	W	1	UInt16	mV	MaxValue :333mV	Rcoil Secondary
	W	1	UInt16	-	0,1	Voltage Connection 0 = Direct Connect 1 = 3PH4W (3 VTs)
	W	1	UInt16	-	0,1	Current Connection 0 = Rogowski coil 1 = coil

Set harmonic times

Command Number	Action R/W	Size	Туре	Units	Range	Description
1004	W	1	UInt16	-	2-52	HX harmonic times
	W	1	UInt16	-	2-52	HY harmonic times
	W	1	UInt16	-	2-52	HZ harmonic times

Set Digital Output

Command Number	Action R/W	Size	Туре	Units	Range	Description
1005	W	1	UInt16	_		0 = Relay-Open 1 = Relay-Closed

Reset Energy

Command Number	Action R/W	Size	Туре	Units	Range	Description
1006	W	1	UInt16	-	2050- 2053	2050: Reset Phase 1 2051: Reset Phase 2 2052: Reset Phase 3 2053: Reset Phase 1,2,3

13.4 Modbus register list

Meter

Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description
Meter Model	50	R	20	UTF8	_	
Serial Number	70	R	2	UInt32	_	
Firmware Version	72	R	1	UInt16	-	DLF format: X.Y.ZTT
Date time	73	R/WC	4	Date time	_	Date/Time Reg.73: Year 00-99 (year from 2000 to 2099) Reg.74: Month (b15:b8), day (b7:b0) Reg. 75: Hour (b15:b8) ,Minute (b7:b0) Reg. 76: Millisecond

Communications

Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description
Address	80	R/WC	1	UInt16	-	1-247
Baud Rate	81	R/WC	1	UInt16	-	0=1200 1=2400 2=4800 3=9600 4=19200 5=38400 6=57600
Parity	82	R/WC	1	UInt16	-	0 = ODD 1 = EVEN 2 = None

Power System

Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description
Wiring Type	90	R/WC	1	UInt16	-	0 = 1PH2W L-N 1 = 1PH2W L-L 2 = 3PH4W 3 = 3PH3W 4 = 1PH3W_LLN
Nominal Frequency	91	R/WC	1	UInt16	Hz	
VT Primary	92	R/WC	2	UInt32	V	
VT Secondary	94	R/WC	1	UInt16	V	
coil Primary	95	R/WC	2	UInt32	Α	
coil Secondary	97	R/WC	1	UInt16	mV	MaxValue:333mV
Rcoil Primary	98	R/WC	2	UInt32	Α	
Rcoil Secondary	100	R/WC	1	UInt16	mV	MaxValue:333mV
Voltage Connection	101	R/WC	1	UInt16	-	0 = Direct Connect 1 = 3PH3W (2 VTs) 2 = 3PH4W (3 VTs)
Current Connection	102	R/WC	1	UInt16	-	0 = Rogowski coil 1 = Coil

Digital Outputs

Register Alias	Register Address		Size	Туре	Units	Description
Digital Output Status	150	R/WC	1	Bitmap		0 = Relay-Open 1 = Relay-Closed

Command Register

Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description
Command	300	R/W	1	UInt16	-	
Parameter 001	301	R/W	1	UInt16	-	
Parameter 002	302	R/W	1	UInt16	-	
		R/W	1	UInt16	-	
Parameter 123	423	R/W	1	UInt16	-	
Requested Command	424	R	1	UInt16	-	
Command Result	425	R	1	UInt16	-	0 = Valid Operation 80 = Invalid Command 81 = Invalid Parameter 82 = Invalid Number of Parameters 83 = Operation Not Performed

Basic Data

Power factor ,frequency, harmonics, Current, voltage, power,

Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description			
Power Factor									
PF1	2000	R	2	Float32	-	Phase 1 Power Factor			
PF2	2002	R	2	Float32	-	Phase 2 Power Factor			
PF3	2004	R	2	Float32	-	Phase 3 Power Factor			
PF Avg	2006	R	2	Float32	-	Average Of PF1, PF2, PF3			
DPF1	2008	R	2	Float32	-	Phase 1 Displacement Power Factor			
DPF2	2010	R	2	Float32	_	Phase 2 Displacement Power Factor			
DPF3	2012	R	2	Float32	_	Phase 3 Displacement Power Factor			
DPF Avg	2014	R	2	Float32	-	Average Of DPF1,DPF2, DPF3			
Frequenc	У								
Freq1	2016	R	2	Float32	Hz	Phase 1 Frequency			
Freq2	2018	R	2	Float32	Hz	Phase 2 Frequency			
Freq3	2020	R	2	Float32	Hz	Phase 3 Frequency			
FreqAvg	2022	R	2	Float32	Hz	Average of Freq1, Freq2, Freq3			
Harmoni	cs Config	uration	1						
HX harmonic times	2024	R/WC	1	UInt16	_	Range:2-52			
HY harmonic times	2025	R/WC	1	UInt16	-	Range:2-52			
HZ harmonic times	2026	R/WC	1	UInt16	-	Range:2-52			

Current	Harmoni	CS				
I1THDx	2027	R	2	Float32	%	Phase 1 X times harmonics current distortion
I2THDx	2029	R	2	Float32	%	Phase 2 X times harmonics current distortion
I3THDx	2031	R	2	Float32	%	Phase 3 X times harmonics current distortion
ITHDx Avg	2033	R	2	Float32	%	Average of I1THDx, I2THDx, I3THDx
I1THDy	2035	R	2	Float32	%	Phase 1 y times harmonics current distortion
I2THDy	2037	R	2	Float32	%	Phase 2 y times harmonics current distortion
I3THDy	2039	R	2	Float32	%	Phase 3 y times harmonics current distortion
ITHDy Avg	2041	R	2	Float32	%	Average of U1THDy, U2THDy, U3THDy
I1THDz	2043	R	2	Float32	%	Phase 1 z times harmonics current distortion
I2THDz	2045	R	2	Float32	%	Phase 2 z times harmonics current distortion
I3THDz	2047	R	2	Float32	%	Phase 3 z times harmonics current distortion
ITHDz Avg	2049	R	2	Float32	%	Average of U1THDz, U2THDz, U3THDz
I1THD	2051	R	2	Float32	%	Phase 1 total harmonics current distortion

I2THD	2053	R	2	Float32	%	Phase 2 total harmonics current distortion
I3THD	2055	R	2	Float32	%	Phase 3 total harmonics current distortion
ITHD Avg	2057	R	2	Float32	%	Average of U1THD, U2THD, U3THD
I1THx	2059	R	2	Float32	V	Phase 1 x times harmonics current
I2THx	2061	R	2	Float32	V	Phase 2 x times harmonics current
I3THx	2063	R	2	Float32	V	Phase 3 x times harmonics current
ITHx Avg	2065	R	2	Float32	V	Average of U1THx, U2THx, U3THx
I1THy	2067	R	2	Float32	V	Phase 1 y times harmonics current
I2THy	2069	R	2	Float32	V	Phase 2 y times harmonics current
I3THy	2071	R	2	Float32	V	Phase 3 y times harmonics current
ITHy Avg	2073	R	2	Float32	V	Average of U1THy, U2THy, U3THy
I1THz	2075	R	2	Float32	V	Phase 1 z times harmonics current
I2THz	2077	R	2	Float32	V	Phase 2 z times harmonics current
I3THz	2079	R	2	Float32	V	Phase 3 z times harmonics current
ITHz Avg	2081	R	2	Float32	V	Average of U1THz, U2THz, U3THz

Voltage H	larmonic	S				
U1THDx	2083	R	2	Float32	%	Phase 1 X times harmonics voltage distortion
U2THDx	2085	R	2	Float32	%	Phase 2 X times harmonics voltage distortion
U3THDx	2087	R	2	Float32	%	Phase 3 X times harmonics voltage distortion
UTHDx Avg	2089	R	2	Float32	%	Average of U1THDx, U2THDx, U3THDx
U1THDy	2091	R	2	Float32	%	Phase 1 y times harmonics voltage distortion
U2THDy	2093	R	2	Float32	%	Phase 2 y times harmonics voltage distortion
U3THDy	2095	R	2	Float32	%	Phase 3 y times harmonics voltage distortion
UTHDy Avg	2097	R	2	Float32	%	Average of U1THDy, U2THDy, U3THDy
U1THDz	2099	R	2	Float32	%	Phase 1 z times harmonics voltage distortion
U2THDz	2101	R	2	Float32	%	Phase 2 z times harmonics voltage distortion
U3THDz	2103	R	2	Float32	%	Phase 3 z times harmonics voltage distortion
UTHDz Avg	2105	R	2	Float32	%	Average of U1THDz, U2THDz, U3THDz
U1THD	2107	R	2	Float32	%	Phase 1 total harmonics voltage distortion

	baca 2 total
harr	hase 2 total nonics voltage distortion
	hase 3 total nonics voltage distortion
	rage of U1THD, 2THD, U3THD
	ase 1 x times nonics voltage
	ase 2 x times monics voltage
	ase 3 x times monics voltage
	rage of U1THx, 2THx, U3THx
	ase 1 y times nonics voltage
	ase 2 y times monics voltage
	ase 3 y times monics voltage
	rage of U1THy, 2THy, U3THy
	ase 1 z times nonics voltage
	ase 2 z times monics voltage
	ase 3 z times monics voltage
	rage of U1THz, 2THz, U3THz
Current	
I1 2139 R 2 Float32 A Pha	ase 1 Current
I2 2141 R 2 Float32 A Pha	ase 2 Current
I3 2143 R 2 Float32 A Pha	ase 3 Current

Current Avg	2145	R	2	Float32	Α	Average of I1, I2, I3
Voltage						
U1	2147	R	2	Float32	V	Phase 1 Voltage
U2	2149	R	2	Float32	V	Phase 2 Voltage
U3	2151	R	2	Float32	V	Phase 3 Voltage
Voltage Avg	2153	R	2	Float32	V	Average of U1, U2, U3
Power						
P1	2155	R	2	Float32	kW	Active Power Phase 1
P2	2157	R	2	Float32	kW	Active Power Phase 2
Р3	2159	R	2	Float32	kW	Active Power Phase 3
PTotal	2161	R	2	Float32	kW	Total Active Power
FQ1	2163	R	2	Float32	kVAR	Fundamental Reactive Power Phase 1
FQ2	2165	R	2	Float32	kVAR	Fundamental Reactive Power Phase 2
FQ3	2167	R	2	Float32	kVAR	Fundamental Reactive Power Phase 3
FQTotal	2169	R	2	Float32	kVAR	Total Fundamental Reactive Power
S1	2171	R	2	Float32	kVA	Apparent Power Phase 1
S2	2173	R	2	Float32	kVA	Apparent Power Phase 2
S3	2175	R	2	Float32	kVA	Apparent Power Phase 3
STotal	2177	R	2	Float32	kVA	Total Apparent Power

Energy

Most energy values are available in both unsigned 64-bit integer and 32-bit floating point format.

Energy values – 64-bit integer								
Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description		
Active Energy								
EP1Imp	3000	R	4	UInt64	Wh	Active Energy Import Phase 1		
EP2Imp	3004	R	4	UInt64	Wh	Active Energy Import Phase 2		
EP3Imp	3008	R	4	UInt64	Wh	Active Energy Import Phase 3		
EPImp	3012	R	4	UInt64	Wh	Total Active Energy Import		
EP1Exp	3016	R	4	UInt64	Wh	Active Energy Export Phase 1		
EP2Exp	3020	R	4	UInt64	Wh	Active Energy Export Phase 2		
EP3Exp	3024	R	4	UInt64	Wh	Active Energy Export Phase 3		
EPExp	3028	R	4	UInt64	Wh	Total Active Energy Export		
Reactive Energy								
EQ1Imp	3032	R	4	UInt64	VARh	Reactive Energy Import Phase 1		
EQ2Imp	3036	R	4	UInt64	VARh	Reactive Energy Import Phase 2		
EQ3Imp	3040	R	4	UInt64	VARh	Reactive Energy Import Phase 3		
EQImp	3044	R	4	UInt64	VARh	Total Reactive Energy Import		
EQ1Exp	3048	R	4	UInt64	VARh	Reactive Energy Export Phase 1		

EQ2Exp	3052	R	4	UInt64	VARh	Reactive Energy Export Phase 2
EQ3Exp	3056	R	4	UInt64	VARh	Reactive Energy Export Phase 3
EQExp	3060	R	4	UInt64	VARh	Total Reactive Energy Export
Apparen	t Energy					
ES1Imp	3064	R	4	UInt64	VAh	Apparent Energy Import Phase 1
ES2Imp	3068	R	4	UInt64	VAh	Apparent Energy Import Phase 2
ES3Imp	3072	R	4	UInt64	VAh	Apparent Energy Import Phase 3
ESImp	3076	R	4	UInt64	VAh	Total Apparent Energy Import
ES1Exp	3080	R	4	UInt64	VAh	Apparent Energy Export Phase 1
ES2Exp	3084	R	4	UInt64	VAh	Apparent Energy Export Phase 2
ES3Exp	3088	R	4	UInt64	VAh	Apparent Energy Export Phase 3
ESExp	3092	R	4	UInt64	VAh	Total Apparent Energy Export
	Ene	ergy va	lues –	32-bit fl	oating	point
Register Alias	Register Address	Action R/WC	Size	Туре	Units	Description
Active E	nergy					
EP1Imp	4000	R	2	Float32	Wh	Active Energy Import Phase 1
EP2Imp	4002	R	2	Float32	Wh	Active Energy Import Phase 2

		I							
EP3Imp	4004	R	2	Float32	Wh	Active Energy Import Phase 3			
EPImp	4006	R	2	Float32	Wh	Total Active Energy Import Phase All			
EP1Exp	4008	R	2	Float32	Wh	Active Energy Export Phase 1			
EP2Exp	4010	R	2	Float32	Wh	Active Energy Export Phase 2			
EP3Exp	4012	R	2	Float32	Wh	Active Energy Export Phase 3			
EPExp	4014	R	2	Float32	Wh	Total Active Energy Export Phase All			
EP1	4016	R	2	Float32	Wh	Total Active Energy Phase 1			
EP2	4018	R	2	Float32	Wh	Total Active Energy Phase 2			
EP3	4020	R	2	Float32	Wh	Total Active Energy Phase 3			
EPSUM	4022	R	2	Float32	Wh	Total Active Energy Phase All			
Reactive	Reactive Energy								
EQ1Imp	4024	R	2	Float32	VARh	Reactive Energy Import Phase 1			
EQ2Imp	4026	R	2	Float32	VARh	Reactive Energy Import Phase 2			
EQ3Imp	4028	R	2	Float32	VARh	Reactive Energy Import Phase 3			
EQImp	4030	R	2	Float32	VARh	Total Reactive Energy Import Phase All			
EQ1Exp	4032	R	2	Float32	VARh	Reactive Energy Export Phase 1			
EQ2Exp	4034	R	2	Float32	VARh	Reactive Energy Export Phase 2			
EQ3Exp	4036	R	2	Float32	VARh	Reactive Energy Export Phase 3			

EQExp	4038	R	2	Float32	VARh	Total Reactive Energy Export Phase All		
EQ1	4040	R	2	Float32	VARh	Total Reactive Energy Phase 1		
EQ2	4042	R	2	Float32	VARh	Total Reactive Energy Phase 2		
EQ3	4044	R	2	Float32	VARh	Total Reactive Energy Phase 3		
EQSUM	4046	R	2	Float32	VARh	Total Reactive Energy Phase All		
Apparent Energy								
ES1Imp	4048	R	2	Float32	VAh	Apparent Energy Import Phase 1		
ES2Imp	4050	R	2	Float32	VAh	Apparent Energy Import Phase 2		
ES3Imp	4052	R	2	Float32	VAh	Apparent Energy Import Phase 3		
ESImp	4054	R	2	Float32	VAh	Total Apparent Energy Import Phase All		
ES1Exp	4056	R	2	Float32	VAh	Apparent Energy Export Phase 1		
ES2Exp	4058	R	2	Float32	VAh	Apparent Energy Export Phase 2		
ES3Exp	4060	R	2	Float32	VAh	Apparent Energy Export Phase 3		
ESExp	4062	R	2	Float32	VAh	Total Apparent Energy Export Phase All		
ES1	4064	R	2	Float32	VAh	Total Apparent Energy Phase 1		
ES2	4066	R	2	Float32	VAh	Total Apparent Energy Phase 2		
ES3	4068	R	2	Float32	VAh	Total Apparent Energy Phase 3		
ESSUM	4070	R	2	Float32	VAh	Total Apparent Energy Phase All		

13.5 Harmonics calculations

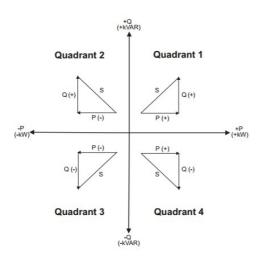
The power quality analysis values use the following abbreviations:

- Fundamental phase current rms: I1
- Fundamental phase voltage rms: V1
- Total harmonic distortion of the phase current
- Total harmonic distortion of the phase voltage
- Harmonic distortion on the phase current

$$HD_{I_x} = \frac{I_x}{I_1}, x = 2, 3, ..., N$$

$$HD_{I_y} = \frac{I_y}{I_1}, y = 2, 3, ..., N$$

$$HD_{I_z} = \frac{I_z}{I_1}, z = 2, 3, ..., N$$


Harmonic distortion on the phase voltage

$$\begin{split} HD_{V_x} &= \frac{V_x}{V_1}, & \text{x = 2, 3,..., N} \\ HD_{V_y} &= \frac{V_y}{V_1}, & \text{y = 2, 3,..., N} \\ HD_{V_z} &= \frac{V_z}{V_1}, & \text{z = 2, 3,..., N} \end{split}$$

13.6 Power, energy and power factor

Power and the PQ coordinate system

The meter uses the values of real power (P) and reactive power (Q) on
the PQ coordinate system to calculate apparent power

Power flow

Positive power flow P(+) and Q(+) means power is flowing from the power source towards the load. Negative power flow P(-) and Q(-) means power is flowing from the load towards the power source.

Energy delivered (imported) / energy received (exported)

The meter interprets energy delivered (imported) or received (exported) according to the direction of real power (P) flow. Energy delivered (imported) means positive real power flow (+P) and energy received(exported) means negative real power flow (-P).

Power factor (PF)

Power factor (PF) is the ratio of real power (P) to apparent power (S), and is a number between 0 and 1.

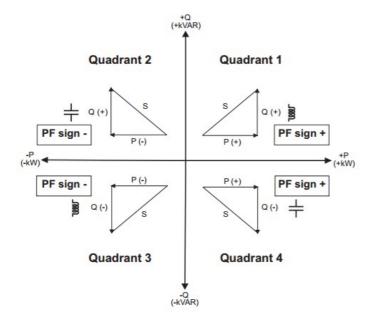
An ideal, purely resistive load has no reactive components, so its power factor is one (PF = 1, or unity power factor). A purely inductive or capacitive load no resistive components, so its power factor is zero (PF = 0).

True PF and displacement PF

The meter supports true power factor and displacement power factor values:

- True power factor includes harmonic content(PF).
- Displacement power factor only considers the fundamental frequency(DPF).

PF sign convention


The meter shows positive or negative power factor according to IEC standards.

PF sign in IEC mode

The meter correlates power factor sign (PF sign) with the direction of real power (P)flow.

- For positive real power (+P), the PF sign is positive (+).
- For negative real power (-P), the PF sign is negative (-).

SUTO iTEC GmbH

Werkstr. 2 79426 Buggingen Germany

Tel: +49 (0) 7631 936889-0 Fax: +49 (0) 7631 936889-19

Email: sales@suto-itec.com

Website: http://www.suto-itec.com

SUTO iTEC (ASIA) Co., Ltd.

Room 10, 6/F, Block B, Cambridge Plaza 188 San Wan Road, Sheung Shui, N.T. Hong Kong

Tel: +852 2328 9782 Fax: +852 2671 3863

Email: sales@suto-itec.asia

Website: http://www.suto-itec.com

All rights reserved ©

Modifications and errors reserved. S110_V2_im_en_2019-1